TL-SG105E / TL-SG108E How to Block Management VLAN
TL-SG105E / TL-SG108E How to Block Management VLAN

Business case: TL-SG108E can be used for basic QoS and Egress rate limiting.
Problem: The management interface is exposed on every VLAN, and DHCP is also taken from the first DHCP server to respond not from the specific management VLAN1.
Feature Request: Request to attach the Management Interface and DHCP to a specific VLAN or at least isolate it to only to VLAN1.
Background
Aim: to pair an eero6+ with an SG108E and have the SG108E "smartness" compensate for the lack of features on the eero while still taking advantage of the eero6+ mesh wifi.
Note: the SG108E would give you 5 spare device ports, with this configuration.
The Ideal Setup:
+---------------------------------------------+
| switch — SG105E / SG108E |
+----------------.----------------------------+
| VLAN 500 | VLAN 1 |
+-------.--------+---------.--------.---------+
| port 1 | port 2 | port 3 | port 4 | port 5 |
+--------+------+---------^--------^---------+
| NBN | WAN | LAN | DEVICE 1 — n |
+-------+-------^--------+-------------------+
| ROUTER |
+-----------------+
I was hoping that the management page for the switch would only be accessible from VLAN1. It turns out that it is accessible from any VLAN so long as you know its IP address. This kind of setup is not great having an external network (NBN) be directly interfaced as anyone on the other end of the cable (ISP) could potentially access the management page and with some time access the device.
That was the idea.
I've tried a few implementations of that idea. Starting with variants of the basic port vlan feature of the smart switch. That includes:
- VLAN 1 : Ports 1,2 — VLAN 2 : Ports 3,4,5,6,7,8
- VLAN 2 : Ports 1,2 — VLAN 1 : Ports 3,4,5,6,7,8
- VLAN 2 : Ports 1,2 — VLAN 3 : Ports 3,4,5,6,7 — VLAN 1 : Port 8
No matter which port you plug in you may access the management interface. Do let me know if I missed something obvious.
Moving onto the more advanced 802.1Q VLAN mode. I tried the following variations:
- VLAN 500 : untagged Ports 1,2 — VLAN 1 : untagged Ports 3,4,5,6,7,8
Port 1-2 PVID : 500
Port 3-8 PVID: 1 - VLAN 500 : untagged Ports 1,2 — VLAN 600 : untagged Ports 3,4,5,6,7,8 — VLAN 1 : no members
Port 1-2 PVID : 500
Port 3-8 PVID: 600 - VLAN 500 : untagged Ports 1,2 — VLAN 600 : untagged Ports 3,4,5,6,7 — VLAN 1 : untagged 8
Port 1-2 PVID : 500
Port 3-7 PVID: 600
Port 8 PVID: 1
Then I read the manual and it describes the behaviour such as if a port receives a tagged frame it will read the tag and forward to the appropriate vlan. If a port receives an untagged frame it will add the pvid as a tag and forward as if it were tagged. This leads me to believe the implementation is very basic, which would be also fine, as I can force what I want by being 'clever'. And the 'very basic' assumption also fits with the fact the user interface allows you to enable more than one untagged vlan on one port simultaneously (which should be an error).
- VLAN 500 : untagged Port 1 — VLAN 600 : untagged Port 2 — VLAN 1 : untagged 3,4,5,6,7,8
Port 1 PVID : 600
Port 2 PVID: 500
Port 3-8 PVID: 1
Note: the swapping of PVID on Port 1 and 2.
I had hoped that on receipt of an untagged packet on Port 2 it wold be forwarded to VLAN 500 and emerge untagged at Port 1 and similarly a receipt of an untagged packet on Port 1 would be forwarded to VLAN 600 and emerged untagged at Port 2. However this is not the case, vlan membership is controlled by the egress rule only (tagged/untagged/not member) despite the PVID value set, so traffic is blocked since the port pvid is corresponds to a non member and the description of the forwarding in the user guide is not exactly what it seems (omitted the blocking description). Note: this would have worked nicely as anyone trying to access the switch from the outside world on Port 1 would have had their response packets forwarded to Port 2 the router wan interface. Effectively dropping the data.
This finally led me to another tricky solution, making the ports an opposite tagged member of the other port, only to make each an opposite VLAN member, so the data would not drop.
- VLAN 500 : untagged Port 1, tagged Port 2 — VLAN 600 : untagged Port 2, tagged Port 1
Port 1 PVID : 600
Port 2 PVID: 500
VLAN 1 : untagged 3,4,5,6,7,8
Port 3-8 PVID: 1
Expectation: a switch should not output on the input port. Thus,
- Untagged enter on Port 1, PVID 600, will exit on VLAN 600 untagged on Port 2.
- Tagged 600 enter on Port 1, will exit VLAN 600 untagged on Port 2.
- Tagged 500 enter on Port 1, will exit VLAN 500 tagged on Port 2.
- Untagged enter on Port 2, PVID 500, will exit on VLAN 500 Port 1 untagged.
- Tagged 500 enter on Port 2, will exit VLAN 500 untagged on Port 1.
- Tagged 600 enter on Port 2, will exit VLAN 600 tagged on Port 1.
Anyway, while this tricked to the switch into not blocking the untagged packets, the switch still responds to requests but as tagged on the same port, so the expectation that it would not was not correct, also this cross config has the side effect of allowing tagged traffic to be responded to from the management interface as well.
The reason I'm making this post is because I am a bit burned out after all this testing and I can't think if there is another tricky solution or not. Again, I am looking for passthrough communications in port 1 and 2 as if it were a straight cable, while also blocking the management interface on those ports. Do let me know if you think a different config would work for that.
This feature request (option to isolate the management interface to VLAN1 and take DHCP only on VLAN1) could be solved by a firmware update.
- Copy Link
- Subscribe
- Bookmark
- Report Inappropriate Content
Due to the security issues with such a design, the marketing behind such products with limited feature sets and faulty/incomplete implementations, and users such as @Clive_A defending the product and marketing segments, I must draw attention to the issues affecting switches like the TL-SG108E which are not readily admitted and which this thread seems to suggest are never to be resolved:
- No HTTPS
- No SSH
- DHCP influenced by/traffic leaked to every VLAN accessible to the switch
- Management address and HTTP interface are available to every VLAN accessible to the switch
These seem to be significant issues for security and present simple/obvious operational implications should a DHCP server exist on more than one VLAN. I do not care what the products are named or how they are marketed. I care when the ability to use VLANs for security and isolation is crippled by faulty/incomplete implementation and questionable design choices - the sort of things that turn any defects in the web UI (and any ability to reveal the management password sent via HTTP) into exploits that can be used from (again) every VLAN accessible to the switch.
At this point, the posts so far at least acknowledge products by TP-Link and rival brands that may have proper functionality and suggests that the problematic behavior is "working as intended". Along with that conclusion based on messages so far and lack of evidence to the contrary, I challenge TP-Link as a company and every developer involved in such behavior to defend this behavior and the decisions that led to it. There is "no constructive result from this" defense of the product and naming strategy by Clive_A, and possibly no defense of the vulnerabilities in production firmware, the marketing strategy, lack of interest by the developers, and the continued sale of the products as if they fully implement VLANs in a useful and secure way. I expect, though, that it is at least worth asking if the problems could be fixed with a firmware update or if the hardware has been released in a way that dooms buyers to having hardware that can only give them risks they would not reasonably expect from the advertised feature list.
--Baker_DSP
- Copy Link
- Report Inappropriate Content
- Copy Link
- Report Inappropriate Content
Self-explanatory.. this is a security issue if this is NOT implemented. Even for basic switch-gear. If it's sold as "managed" in any capacity, this needs to be there.
- Copy Link
- Report Inappropriate Content
@Clive_A I'm well aware of TP-Link's products.. You're not picking up what I'm puttin' down bud. Conceptualize my point at a big-picture level, and try again. This is an outright defective reply. Also, if you're going to be a p*ick, be a useful p*ick. And FFS, why are you people censoring stuff lol. I cant even type something that's remotely not even a swear word in here.. this is hilarious. If y'all want to be a real functional compeditor to Ubiquity, you need to GET REAL.
- Copy Link
- Report Inappropriate Content
@imoula Bro here's just trash, don't worry.. I'm sure they're not all like him. The bigger issue is the fact this is sold on Amazon and other places as literally a Managed Switch, when it is in-fact, NOT. It ruins the reputation of some actually GREAT TP-Link products. I'm going to have a chat with my MSP rep an see if we can get this dude away from us on these forums maybe. This is impacting TP-Link's reputation in our industry, and I'm sure TP-Link doesn't want that.
- Copy Link
- Report Inappropriate Content
@Clive_A I don't even USE this switch model.. The issue is you're selling this/letting this be sold as a managed product when it isn't, not properly. I'm surprised TP-Link's US division allows this to be sold.. usually troublesome SKU's like this are gatekept away so only the Asian etc markets get this less-than-stable/desireable etc stuff. Again, you miss my (and other's) entire point and it's concept.
- Copy Link
- Report Inappropriate Content
Any updates on the progress in getting some less offensive firmware versions or responses from TP-Link?
Efforts have been made to get a CVE designation for the relevant hardware and affected firmware versions, but that also has not had any visible response.
Let's also consider these write-ups that have existed for some time, such as from 2016 and 2018:
pentestpartners - security-blog/how-i-can-gain-control-of-your-tp-link-home-switch/
goughlui - 2018/11/03/not-so-smart-tp-link-tl-sg105e-v3-0-5-port-gigabit-easy-smart-switch/#:~:text=Security%3F%20Um%20%E2%80%A6%20Hold%20My%20Beer.
The links had to be altered somewhat because of the forum's filtering of external links; however the information is out there, as are the vulnerabilities. The right for people to know, understand, and verify risks follows that. If this post is removed: "How dare you conceal that information?"
Sure, someone could say "customer beware" and "we aren't marketing as if these switches are properly managed switches", but with known vulnerabilities such as insecure transmission of login credentials, repeatable ways to DoS a switch, and leaking of management traffic across any-and-all VLANs, perhaps a "How could you?" question is appropriate. How could you continue to market this as a managed switch that pretends to have proper management and user access features? How could you not patch this and expect that no one would shame or ridicule your practices?
Perhaps Clive, a moderator, a lawyer, or other representative would see our posts and those questions as offensive. They are only offensive if you are not taking the issues seriously. If you are not taking the issues seriously, then offense is appropriate and well-earned.
- Copy Link
- Report Inappropriate Content
This forum post and other vulnerability reports have been pointed out to TP-Link again. Contact methods today include the security reporting e-mail address and live chat.
There is now at least one confirmed ticket to assist in removing any claims of "plausible deniability" as TP-Link has been informed of these issues, and not just in this forum where the only obvious TP-Link involvement appears to be Clive.
[TP-Link Support]-[TKID241004455] 18341555- TL-SG105E- Security issues
- Copy Link
- Report Inappropriate Content
- Copy Link
- Report Inappropriate Content
- Copy Link
- Report Inappropriate Content

Information
Helpful: 8
Views: 5915
Replies: 20
Voters 8







